US009170780B2

a2 United States Patent 10) Patent No.: US 9,170,780 B2
Gieselmann et al. 45) Date of Patent: Oct. 27,2015

(54) PROCESSING CHANGED APPLICATION 2009/0313503 Al* 12/2009 Atlurietal.ccccoevnnen.. 714/19
2010/0082556 Al* 4/2010 Srinivasan et al. . 707/693

METADATA BASED ON RELEVANCE 2012/0167178 Al* 6/2012 Rauhetal.coeoevne. 726/4

2013/0019235 Al* 1/2013 Tammccoovvrenrnnne.. 717/170
(75) Inventors: Thomas Gieselmann, Hockenheim 2013/0031528 ALl* 1/2013 Khader et al. oo, 717/106
(DE); Markus Viol, Walldorf (DE); 2013/0055201 Al* 2/2013 Noetal. ... 717/113
: . 2013/0061209 Al* 3/2013 Lamccooveeireirenrennnn. 717/123
g:lr):tesntu]:;;it’(]gg.mslilgn(?a’f;irs 2013/0159971 AL* 62013 Gieselmann etal. ... 717/120
’ ’ ’ 2014/0310686 Al* 10/2014 Srinivasanetal. 717/120
Hockenheim (DE); Alexander Rauh,
Weinheim (DE); Franz Miiller, OTHER PUBLICATIONS
Stutensee (DE)

G.T. Heineman and W.T. Councill, Definition of a software compo-
nent and its elements, in: Component-Based Software Engineering:
Putting the Pieces together, eds. G.T. Heineman and W.T. Councill
(Addison-Wesley, Boston, 2001).*

(*) Notice: Subject. to any disclaimer,. the term of this GNU Make, Published at http:/www.gnu.org/software/make/
patent is extended or adjusted under 35 manual/make html Date: Jun. 5, 2009.*

(73) Assignee: SAP SE, Walldorf (DE)

U.S.C. 154(b) by 865 days. Makefile—How does make track timestamps, published at http://
stackoverflow.com/questions/75073 55/how-does-make-track-
(21) Appl. No.: 13/326,560 timestamps, Sep. 201 1.*
GNU Makefile (published at http://www.gnu.org/software/make/
(22) Filed: Dec. 15, 2011 manual/make.html}—Jun. 5, 2009.*
(65) Prior Publication Data * cited by examiner
US 2013/0159971 Al Jun. 20, 2013 Primary Examiner — Don Wong

Assistant Examiner — Hossain Morshed

(1) Int. CI. (74) Attorney, Agent, or Firm — Buckley, Maschoff &

GO6F 9/44 (2006.01)
GOGF 9/45 (2006.01) Talwalkar LLC
(52) US.CL (57) ABSTRACT
CPC it GO6F 8/30(2013.01) . . L
(58) Field of Classification Search A system includes execution of a software application based
None on metadata defining a first plurality of software components,

reception of second metadata defining the first plurality of

See application file for complete search history. R
PP P 4 software components, determination, based on the second

(56) References Cited metadata, of a second plurality of the first plurality of soft-
ware components for which the second metadata is different
U.S. PATENT DOCUMENTS from the first metadata, and for which the second metadata is

associated with elements of the software application, and

g’gzg’ggé E% : %gg}i ZCiﬁCi ett all. """""""" ;};;3? generation of the elements of the software application based
8713.526 Ba* 42014 Jorf:sSZteala Co 71 on the second metadata of the second plurality of software
8,782,604 B2* 7/2014 Kondurietal. 717/122 components.

2007/0143379 Al* 6/2007 iDalfoetal. 707/205

2008/0201299 A1* 8/2008 Lehikoinen etal. 707/3 9 Claims, 5 Drawing Sheets

Pl

20
kS [Raoewe Metadata Associated With A Fist Plurality Of Software Cumponenhs]

s210
I .
Determine, Based On The Received Metadata, A Second Pluraiity Of The
First Plurality Of Softwara Components Associated With Changed Metadata
‘And With Elerments Of A Software Application

I
[Identify A First One Of The Second Plurality OF Software Components]

Tdantified Software Component Been
Ereviously Gonsidered In Generation Of

Create Indication To Consider kientified Software.
Companent In Generation Of Appiicaion Elernents

Identified Software Componant’
Mora Recent Than Previousiy-considered
Instance Of Identified Software,

Igentify A Next One Of
“The Second Plurality O
Software Components.

Frocessed All OF
Ths Second Plurality Of Software

P

[Generate Appilcafion Elements Based On Indicated Software Components]

U.S. Patent Oct. 27, 2015 Sheet 1 of 5 US 9,170,780 B2

100~
130
Ul Client
170
Ul Designer
150 y 140
AWl
Ul Component Ul Backend
Metadata
3160
BO Metadata Backend Service Layer o
i A
120
Datastore

FIG. 1

U.S. Patent Oct. 27, 2015 Sheet 2 of 5 US 9,170,780 B2

200 r 3205

N Receive Metadata Associated With A First Plurality Of Software Components

\ J

f8210

(Determing, Based On The Received Metadata, A Second Plurality Of The]
First Plurality Of Software Components Associated With Changed Metadata
And With Elements Of A Software Application

\, y

f8215

[Identify A First One Of The Second Plurality Of Software Components]

>

Has
|dentified Software Component Been
reviously Considered In Generation Q
plication Element:

Yes

r $225

Create Indication To Consider Identified Software
Component In Generation Of Application Elements

5230

Timestamp Of
Identified Software Component
More Recent Than Previously-considered
Instance Of Identified Software

Component
?

r S240

[dentify A Next One Of
The Second Plurality Of
Software Components
A

S235

Processed All O
The Second Plurality Of Software
Components

s S245

[Generate Application Elements Based On Indicated Software Components]

FIG. 2

US 9,170,780 B2

Sheet 3 of 5

Oct. 27, 2015

U.S. Patent

S8101|04 Uonezuoyiny

0€e /

¥se] uowwo))

108(q0 paubissy

MaIA

18)USINIOM

Sjusws|3 1IN

ove -

g 94

S80BLSIU| 80IMSS

“ adoog

siuauodwo) |N

LT[T[]

sabuey) Juensipy

A
0ce
4% /

u sbuey? ejepejspy

| 8buey) elepelspy

sabueyn JadojersQ

ormk

U.S. Patent

Oct. 27,2015 Sheet 4 of 5
f400
ShortName Timestamp
comp001 010302011123323
comp007 010302011123445
FIG. 4A
f400
ShortName Timestamp
comp001 010302011123323
comp007 010302011123445
comp013 01102011093423
FIG. 4B
f400
ShortName Timestamp
comp001 010302011123323
comp007 01100201093554
comp013 01102011093423

FIG. 4C

US 9,170,780 B2

U.S. Patent Oct. 27, 2015 Sheet 5 of 5 US 9,170,780 B2

|

| |
| |
: , L , Output |
: Input Device(s) Communication Device Device(s) :
| 540 520 550 |
| ‘ :
I |
| |
I 4 N |
| |
I |
| |
: » Processor |
I |
| 510 |
I ry ry g |
| |
I |
: Memory :
| 50 |
| |
— 4 T |

: \) / :
: 530 |
| U |
| Progam Code |
| 532 I
| |
I |
| |
: < Metadata > |
| 534 I
| |
| ~—— ——— |
| |
I |

—_—_— — e e e e e —— e — ———— —— —

US 9,170,780 B2

1
PROCESSING CHANGED APPLICATION
METADATA BASED ON RELEVANCE

FIELD

Some embodiments relate to metadata-driven application
platforms. More specifically, some embodiments relate to
systems to effect imported metadata changes within a back-
end service layer.

BACKGROUND

A backend service layer may implement metadata models
to support different business solutions. Metadata models may
include generic models of a business object, a floorplan (i.e.,
a user interface layout), user interface text, a process compo-
nent, and a message type, among others. A business object,
for example, is a software model representing real-world
items used during the transaction of business. An instance of
a business object metadata model may comprise a SalesOrder
object model or an Organization object model. Instances of
these object models, in turn, represent specific data (e.g.,
SalesOrder 4711, ACME corporation).

An instance of a business object metadata model (e.g., a
SalesOrder object model or, more generically, a business
object object model) may specify business logic and/or data
having any suitable structure. The structure may be deter-
mined based on the requirements of a business scenario in
which the instance is to be deployed. A business application
for a particular business scenario may require many business
object object models, where the structure of each has been
determined based on the requirements of the particular busi-
ness scenario.

A customer deploying a business application may desire
changes to the business objects included in the business appli-
cation. For example, a customer may require a field (e.g.,
“SerialNumber”) which does not exist within the “Product”
business object of a business application. A developer may
therefore modify the metadata of the business object in the
backend service layer to provide the additional field. A busi-
ness application might also provide pre-defined user inter-
faces to interact with the business objects. A developer may
similarly modify metadata of these user interfaces to add
entities of a user interface data model and to bind these user
interface data entities to business object entities.

The modified metadata must be imported by a backend
service layer in order to take effect. Some systems provide a
report which lists software components whose metadata has
been modified. These software components may comprise
business objects, user interface entities, etc., and the metadata
modifications may affect certain elements of a software appli-
cation which depend on the software components.

For example, according to role-based access management
systems, a change pointer table lists any workcenters, work-
center views, floorplans, report usages and external user inter-
face applications having changed metadata. Next, all work-
center views related to the changed UI entities are
determined. Authorization policies are then regenerated for
each determined workcenter view. However, some of the
metadata modifications might not have any affect on autho-
rization policies, so much of this policy regeneration might
unnecessarily hamper runtime performance.

10

15

25

30

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system according to some
embodiments.

FIG. 2 is a flow diagram of a process according to some
embodiments.

FIG. 3 is ablock diagram illustrating an example according
to some embodiments.

FIGS. 4A through 4C are tabular representations of a data
structure according to some embodiments.

FIG. 5 is ablock diagram of a computing device according
to some embodiments.

DETAILED DESCRIPTION

FIG. 11is a detailed block diagram of system 100 according
to some embodiments. System 100 includes backend service
layer 110, datastore 120, user interface (UI) client 130, Ul
backend 140, Ul component metadata 150, business object
metadata 160 and Ul designer 170. FIG. 1 represents a logical
architecture for describing some embodiments, and actual
implementations may include more or different components
arranged in any manner. Some embodiments may also reflect
architectures different from that shown in FIG. 1.

Backend service layer 110 may comprise an enterprise
services infrastructure and/or any implementation for provid-
ing services according to a service-oriented architecture para-
digm. Backend service layer 110 may provide services to one
or more service consumers. The services are provided by
executing applications based on business object metadata
160. According to the illustrated embodiment, the services
may include retrieving, creating, modifying and/or deleting
the data of business object instances stored in datastore 120.
Datastore 120 may comprise any one or more systems to store
business data. Such systems include, but are not limited to,
relational database systems, Online Analytical Processing
(OLAP) database systems, data warehouses, application
servers, and flat files.

To provide economies of scale, datastore 120 may include
data of more than one customer (i.e., “tenant”). Backend
service layer 110 includes mechanisms to ensure that a tenant
accesses only the data that the tenant is authorized to access.
Moreover, the data of datastore 120 may be indexed and/or
selectively replicated in an index to allow fast retrieval
thereof.

The data stored in datastore 120 may be received from
disparate hardware and software systems, some of which are
not interoperational with one another. The systems may com-
prise a back-end data environment employed in a business or
industrial context. The data may be pushed to datastore 120
and/or provided in response to queries received therefrom.

Ul designer 170 may be operated by a developer to design
user interfaces by creating and modifying Ul component
metadata 150. Ul component metadata 150 may conform to a
UT component model 150 which is suited to implementation
of'a user interface. The developer adds Ul elements to screen
layout patterns and binds the elements to entities of BO meta-
data 160. This binding facilitates the transmission of data to
and from backend service layer 110.

Ul client 130 comprises an application to render user inter-
faces defined by Ul component metadata 150. UI client 130
also receives user input (e.g., modification of data within a
displayed field, selection of an item from a drop-down menu,
selection of a checkbox, etc.) and, in response, transmits a
corresponding UI request to Ul backend 140. UI client 130
may execute, for example, within a Web browser.

US 9,170,780 B2

3

According to some embodiments, Ul client 130 is located
ata client or user site, while the other elements of system 100
are housed at a provider site and may provide services to other
UI clients located at the same or another user site. The other
elements need not always be accessible to Ul client 130. That
is, Ul client 130 may operate in an “offline” mode.

Ul backend 140 provides communication between UI cli-
ent 130 and backend service layer 110. Generally, Ul backend
140 receives a Ul request which conforms to UI component
metadata 150 from UI client 130, communicates with back-
end service layer 110 to fulfill the request, and provides a
response which conforms to UI component metadata 150 to
UT client 130. According to some embodiments, backend
service layer 110 and UI backend 140 are components of a
same physical computing device. Operation of Ul backend
140 according to some embodiments will be described below.

FIG. 2 comprises a flow diagram of process 200 according
to some embodiments. In some embodiments, one or more
computing devices of an enterprise service provider execute
program code to perform process 200.

All processes mentioned herein may be embodied in pro-
cessor-executable program code stored on one or more of
non-transitory computer-readable media, such as a fixed disk,
a floppy disk, a CD-ROM, a DVD-ROM, a Flash drive, and a
magnetic tape. In some embodiments, hard-wired circuitry
may be used in place of, or in combination with, program
code for implementation of processes according to some
embodiments. Embodiments are therefore not limited to any
specific combination of hardware and software.

Process 200 may be performed at runtime to deploy meta-
data changes into an application platform such as that shown
in FIG. 1. In this regard, prior to process 200, the application
platform was executing a software application based on meta-
data defining a first plurality of software components (e.g., Ul
component metadata 150 and/or BO metadata 160). Then, at
S205, new metadata associated with the first plurality of
software components is received. The received metadata may
include the entirety of UI component metadata 150 and BO
metadata 160, or any subset thereof. Some or all of the
received metadata defining particular software components
may be identical to the prior metadata defining the particular
software components, and based on which the application
was executing.

FIG. 3 is a block diagram to illustrate execution of process
200 according to some embodiments. As shown, developer
changes 310 include a plurality of metadata changes which
are received at S205. Developer changes 310 may comprise,
for example, changes to metadata defining a Ul component
such as a workcenter.

Next, at S210, a second plurality (i.e., a subset) of the first
plurality of software components is determined based on the
metadata received at S205. Each of the second plurality of
software components is associated with metadata received at
S205 which is different from the prior metadata associated
therewith. That is, S210 comprises a determination of those
software components whose metadata has been changed.

S210 also comprises a determination that each of the deter-
mined second plurality of software components is associated
with elements of the software application. For example, the
metadata defining each of the determined second plurality of
software components may be associated with authorization
policies of the software application (e.g., Role-Based Access
Management (RBAM) policies). Accordingly, because this
metadata was changed, the authorization policies must be
regenerated in view of the changed metadata.

Relevant changes 320 of FIG. 3 represent the second plu-
rality of software components determined at S210 according

20

40

45

55

65

4

to some embodiments. As shown, relevant changes includes
not only Ul components as discussed above, but also scope
and service interface components. Embodiments are not lim-
ited to the types of software components mentioned herein.

According to some embodiments, the determination at
S210 is performed by checking an attribute defined by a
developer at design time. For example, prior to process 200,
and only if authorization-relevant metadata defining a Ul
component is changed, a developer fills an attribute (e.g.,
RBAMChangeTimeStamp) of the metadata with a timestamp
indicating the time at which the metadata was changed.
Therefore, identification of the software components whose
metadata is both changed and relevant to authorization poli-
cies merely requires comparing the timestamps of the
received metadata with the timestamps of the current meta-
data defining the software components.

One of the second plurality of software components is
identified at S215 for further processing. Next, at S220, it is
determined whether the identified software component has
been previously considered in the generation of the applica-
tion elements (e.g., authorization policies) to which its meta-
data was deemed relevant at S210. If not, an indication to
consider the identified software component during generation
of'the application elements is created at S225.

FIG. 4A illustrates table 400 according to some embodi-
ments. Table 400 lists the software components which were
previously considered during generation of the application
elements. If it is determined at S220 that the software com-
ponent identified at S215 is not listed in table 400, flow
proceeds to S225 to create an entry including an identifier of
the component and its associated timestamp. For example, it
is assumed that a component comp013 is identified at S215.
Since component comp013 is not listed in table 400 of FIG.
4A, a corresponding entry is created as shown in FIG. 4B.

Flow then proceeds to S235 to determine whether all of the
second plurality of software components have been pro-
cessed. If not, a next one of the second plurality of software
components is identified at S240 and flow returns to S220 for
the determination described above.

Continuing the present example, it is now assumed that the
identified component is comp007. Since component
comp007 is listed in table 400, flow proceeds from S220 to
S230 to determine whether the timestamp of the received
metadata defining component comp007 is more recent than
the timestamp of the previously-considered metadata defin-
ing component comp007. If so, the entry of table 400 is
updated at S225 to include the timestamp of the metadata of
component comp007 received at S205, as shown in FIG. 4C.

If it is determined at S230 that the timestamp of the
received metadata is not more recent than the timestamp of
the previously-considered metadata, flow proceeds to S235
without modifying table 400. Flow cycles through S220-
S240 as described above until it is determined at S235 that all
of the second plurality of software components have been
processed. Then, at S245, application elements are generated
based on the newly-received metadata of the indicated soft-
ware components (e.g., the components listed in table 400).
According to some embodiments, table 400 is passed to a
sequencer for regeneration of the application elements using
known processes.

As described above, the application elements may com-
prise authorization policies. FIG. 3 depicts the creation of
authorization policies 330 based on indicated ones of com-
ponents 320 according to some embodiments. FIG. 3 also
depicts the generation of application elements 340 based on
relevant changes 322.

US 9,170,780 B2

5

In this regard, process 200 may execute with respect to
more than one type of application elements. That is, relevant
changes 320 may include components for which changed
metadata was received and for which the changes are relevant
to authorization policies 330, while relevant changes 322 may
include components for which changed metadata was
received and for which the changes are relevant to Ul ele-
ments 340. Therefore, S215 through S245 may also be
executed with respect to relevant changes 322 to generate Ul
elements 340 therefrom.

FIG. 5 is a block diagram of apparatus 500 according to
some embodiments. Apparatus 500 may comprise a general-
purpose computing apparatus and may execute program code
to perform any of the functions described herein. Apparatus
500 may comprise an implementation of one or more ele-
ments of system 100. Apparatus 500 may include other
unshown elements according to some embodiments.

Apparatus 500 includes processor 510 operatively coupled
to communication device 520, data storage device 530, one or
more input devices 540, one or more output devices 550 and
memory 560. Communication device 520 may facilitate com-
munication with external devices, such as an external design
tool. Input device(s) 540 may comprise, for example, a key-
board, a keypad, a mouse or other pointing device, a micro-
phone, knob or a switch, an infra-red (IR) port, a docking
station, and/or a touch screen. Input device(s) 540 may be
used, for example, to enter information into apparatus 500.
Output device(s) 550 may comprise, for example, a display
(e.g., a display screen) a speaker, and/or a printer.

Data storage device 530 may comprise any appropriate
persistent storage device, including combinations of mag-
netic storage devices (e.g., magnetic tape, hard disk drives
and flash memory), optical storage devices, Read Only
Memory (ROM) devices, etc., while memory 560 may com-
prise Random Access Memory (RAM).

Program code 532 of data storage device 530 may be
executable by processor 510 to provide functions described
herein, including but not limited to process 200. Embodi-
ments are not limited to execution of these functions by a
single apparatus. Metadata 534 may include metadata 150
and/or 160 as described herein. Data storage device 530 may
also store data and other program code for providing addi-
tional functionality and/or which are necessary for operation
thereof, such as device drivers, operating system files, etc.

The foregoing diagrams represent logical architectures for
describing processes according to some embodiments, and
actual implementations may include more or different com-
ponents arranged in other manners. Other topologies may be
used in conjunction with other embodiments. Moreover, each
system described herein may be implemented by any number
of devices in communication via any number of other public
and/or private networks. Two or more of such computing
devices may be located remote from one another and may
communicate with one another via any known manner of
network(s) and/or a dedicated connection. Each device may
comprise any number of hardware and/or software elements
suitable to provide the functions described herein as well as
any other functions. For example, any computing device used
in an implementation of system 100 may include a processor
to execute program code such that the computing device
operates as described herein.

Elements described herein as communicating with one
another are directly or indirectly capable of communicating
over any number of different systems for transferring data,
including but not limited to shared memory communication,
a local area network, a wide area network, a telephone net-
work, a cellular network, a fiber-optic network, a satellite

10

20

25

30

40

45

50

60

65

6

network, an infrared network, a radio frequency network, and
any other type of network that may be used to transmit infor-
mation between devices. Moreover, communication between
systems may proceed over any one or more transmission
protocols that are or become known, such as Asynchronous
Transfer Mode (ATM), Internet Protocol (IP), Hypertext
Transfer Protocol (HTTP) and Wireless Application Protocol
(WAP).

The embodiments described herein are solely for the pur-
pose of illustration. Those in the art will recognize other
embodiments may be practiced with modifications and alter-
ations limited only by the claims.

What is claimed is:

1. A method implemented by a computing system in
response to execution of program code by a processor of the
computing system, comprising:

executing a software application based on metadata defin-

ing data models of a first plurality of software compo-
nents;

receiving second metadata defining the data models of the

first plurality of software components;

determining, based on the second metadata, a second plu-

rality of the first plurality of software components for
which the second metadata defining the data models is
different from the first metadata defining the data mod-
els;

determining, from the second plurality of software compo-

nents, a third plurality of software components for which
the second metadata defining the data models of the third
plurality of software components is associated with
authorization policies of the software application, where
the second plurality of software components comprises
one or more other software components for which the
second metadata defining the data models of the one or
more other software components is not associated with
the authorization policies of the software application;
and

generating the authorization policies of the software appli-

cation based on the second metadata defining the data
models of the third plurality of software components,
and not based on the one or more other software com-
ponents.

2. A method according to claim 1, wherein determining the
third plurality of software components comprises:

determining that one of the second plurality of software

components is associated with the authorization policies
of the software application; and

determining that a timestamp of the second metadata asso-

ciated with the one of the second plurality of software
components is later than a timestamp of the first meta-
data associated with the one of the second plurality of
software components.

3. A method according to claim 1, further comprising:

determining, based on the second metadata, a fourth plu-

rality of the first plurality of software components for
which the second metadata defining the data models of
the fourth plurality of software components is different
from the first metadata defining the data models of the
fourth plurality of software components;

determining, from the fourth plurality of software compo-

nents, a fifth plurality of software components for which
the second metadata defining the data models of the
fourth plurality of software components is associated
with user interface elements of the software application,
where the fourth plurality of software components com-
prises a second one or more other software components
for which the second metadata defining the data models

US 9,170,780 B2

7

of'the second one or more other software components is
not associated with the user interface elements of the
software application; and

generating the user interface elements of the software

application based on the second metadata defining the
data models of the fifth plurality of software compo-
nents, and not based on the second one or more other
software components.

4. A non-transitory medium storing processor-executable
program code, the program code executable by a device to:

execute a software application based on metadata defining

data models of a first plurality of software components;
receive second metadata defining the data models of the
first plurality of software components;

determine, based on the second metadata, a second plural-

ity of the first plurality of software components for
which the second metadata defining the data models is
different from the first metadata defining the data mod-
els;

determine, from the second plurality of software compo-

nents, a third plurality of software components for which
the second metadata defining the data models of the third
plurality of software components is associated with
authorization policies of the software application, where
the second plurality of software components comprises
one or more other software components for which the
second metadata defining the data models of the one or
more other software components is not associated with
the authorization policies of the software application;
and

generate the authorization policies of the software appli-

cation based on the second metadata defining the data
models of the third plurality of software components,
and not based on the one or more other software com-
ponents.

5. A medium according to claim 4, wherein the program
code executable by the device to determine the third plurality
of software components comprises program code executable
by the device to:

determine that one of the second plurality of software

components is associated with the authorization policies
of the software application; and

determine that a timestamp of the second metadata associ-

ated with the one of the second plurality of software
components is later than a timestamp of the first meta-
data associated with the one of the second plurality of
software components.

6. A medium according to claim 4, further comprising
program code executable by the device to:

determine, based on the second metadata, a fourth plurality

of the first plurality of software components for which
the second metadata defining the data models of the
fourth plurality of software components is different
from the first metadata defining the data models of the
fourth plurality of software components;

determine, from the fourth plurality of software compo-

nents, a fifth plurality of software components for which
the second metadata defining the data models of the
fourth plurality of software components is associated
with user interface elements of the software application,
where the fourth plurality of software components com-
prises a second one or more other software components
for which the second metadata defining the data models
of'the second one or more other software components is
not associated with the user interface elements of the
software application; and

20

25

40

45

50

55

8

generate the user interface elements of the software appli-
cation based on the second metadata defining the data
models of the fifth plurality of software components, and
not based on the second one or more other software
components.

7. A computing system comprising:

a memory system storing processor-executable program

code; and

a processor to execute the processor-executable program

code in order to cause the computing device to:
execute a software application based on metadata defining
data models of a first plurality of software components;
receive second metadata defining the data models of the
first plurality of software components;

determine, based on the second metadata, a second plural-

ity of the first plurality of software components for
which the second metadata defining the data models is
different from the first metadata defining the data mod-
els;

determine, from the second plurality of software compo-

nents, a third plurality of software components for which
the second metadata defining the data models of the third
plurality of software components is associated with
authorization policies of the software application, where
the second plurality of software components comprises
one or more other software components for which the
second metadata defining the data models of the one or
more other software components is not associated with
the authorization policies of the software application;
and

generate the authorization policies of the software appli-

cation based on the second metadata defining the data
models of the third plurality of software components,
and not based on the one or more other software com-
ponents.

8. A system according to claim 7, wherein determination of
the third plurality of software components comprises:

determination that one of the second plurality of software

components is associated with the authorization policies
of the software application; and

determination that a timestamp of the second metadata

associated with the one of the second plurality of soft-
ware components is later than a timestamp of the first
metadata associated with the one of the second plurality
of software components.

9. A system according to claim 7, the processor further to
execute the processor-executable program code in order to
cause the computing device to:

determine, based on the second metadata, a fourth plurality

of the first plurality of software components for which
the second metadata defining the data models is different
from the first metadata;

determine, from the fourth plurality of software compo-

nents, a fifth plurality of software components for which
the second metadata defining the data models of the
fourth plurality of software components is associated
with user interface elements of the software application,
where the fourth plurality of software components com-
prises a second one or more other software components
for which the second metadata defining the data models
of the second one or more other software components is
not associated with the user interface elements of the
software application; and

generate the user interface elements of the software appli-

cation based on the second metadata defining the data
models of the fifth plurality of software components, and
not based on the second one or more other software
components.

